| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 
 | 
 
 
 
 import math
 import numpy as np
 import pandas as pd
 from matplotlib import pyplot as plt
 data = pd.read_csv('Advertising.csv')
 datax = data['newspaper'][0:150]
 
 
 
 
 
 datax_1 = data['newspaper'][150:200]
 
 datay = data['sales'][0:150]
 datay_1 = data['sales'][150:200]
 plt.plot(datax, datay, "ob")
 
 def jie_w(datax,datay):
 suma = 0;
 num = 0;
 sum1=0;
 for i in range(len(datax)):
 suma = (datay[i]*(datax[i]-sum(datax)/len(datax)))+suma
 for i in range(len(datax)):
 sum1 = sum1 + datax[i]*datax[i]
 num = sum1 - (sum(datax)*sum(datax))/(len(datax))
 return suma/num
 print("w:",jie_w(datax,datay))
 def jie_b(datax,datay):
 suma = 0;
 tt = jie_w(datax,datay)
 for i in range(len(datax)):
 suma = suma + (datay[i]-tt*datax[i])
 num = suma / (len(datax))
 return num
 k=jie_w(datax,datay)
 b=jie_b(datax,datay)
 print("b",b)
 y1=[0,datax.max()]
 y2=[b,datax.max()*k+b]
 plt.plot(y1,y2,'r')
 plt.show()
 datax_2 = 0
 for i in range(len(datax_1)):
 datax_2 = datax_2+math.pow(datax_1[i+150]*k+b-datay_1[i+150],2)
 wucha = datax_2/len(datax_1)
 print("均方误差:",wucha)
 
 sddsum = 0
 addsum = 0
 datay_av = np.mean(datay_1)
 for i in range(len(datax_1)):
 sddsum = math.pow(datax_1[i+150]*k+b-datay_av,2)
 addsum = math.pow(datay_1[i+150] - datay_av,2)
 R = sddsum/addsum
 print("R的平方分析:",R)
 
 |